
Coarse-Grained Parallelism for Hierarchical Radiosity
Using Group Iterative Methods

Thomas A. Funkhouser
Bell Laboratories �
Abstract

This paper describes algorithms that allow multiple hierarchical ra-
diosity solvers to work on the same radiosity solution in parallel.
We have developed a system based on a group iterative approach
that repeatedly: 1) partitions patches into groups, 2) distributes a
copy of each group to a slave processor which updates radiosities
for all patches in that group, and 3) merges the updates back into
a master solution. The primary advantage of this approach is that
separate instantiations of a hierarchical radiosity solver can gather
radiosity to patches in separate groups in parallel with very little
contention or communication overhead. This feature, along with
automatic partitioning and dynamic load balancing algorithms, en-
ables our implemented system to achieve significant speedups run-
ning on moderate numbers of workstations connected by a local
area network. This system has been used to compute the radiosity
solution for a very large model representing a five floor building
with furniture.

CR Categories and Subject Descriptors:
D.1.3 [Programming Techniques]: Concurrent Programming -
Distributed Programming; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Radiosity.

1 Introduction

An important application of computer graphics is lighting simula-
tion for architectural design. Although radiosity methods are often
used for simulating illumination of building interiors, current ra-
diosity algorithms generally are not fast enough or robust enough
to handle large architectural models complete with furniture due to
their large computational and memory requirements. A plausible
approach for accelerating such a large computation is to partition
the problem among multiple concurrent processors each of which
solves a separate subcomputation. This approach is particularly
attractive using a network of loosely connected workstations since
this type of “parallel computing resource” is common today in many
industrial and research laboratories.

In this paper, we describe a new approach to executing large
radiosity computations in parallel. The key innovation is a group
iterative algorithm that partitions the patches into groups, and it-
eratively solves radiosities for patches in each group separately on
different processors in parallel, while dynamically merging updated
radiosities into a single solution. The primary advantage of this

�Murray Hill, NJ 07974, funk@research.att.com
approach is that different group subcomputations update separate
subsets of the form factors and radiosities, and therefore they can
execute hierarchical radiosity solvers concurrently with little or no
contention. This feature, along with dynamic load balancing al-
gorithms, enables our implemented system to achieve significant
speedups with moderate numbers of workstations distributed on a
local area network. In our implementation, no single process ac-
cesses the entire scene database, and thus we are able to compute
accurate radiosity solutions for very large models.

The paper is organized as follows. The next section reviews the
radiosity method and describes previous work on parallel radiosity
systems. Section 3 describes the classical group iterative method
and discusses how it can be applied to radiosity problems. An
overview of our system organization appears in Section 4, while de-
tailed descriptions of the partitioning and load balancing algorithms
are included in Section 5. Section 6 contains results of experiments
with our system. Finally, Section 7 contains a brief summary and
conclusion.

2 Previous work

Radiosity methods [14] simulate diffuse global illumination by com-
puting the amount of light arriving at each patch by emission or
diffuse reflection from other patches. If each patch is composed
of elements (i.e., substructured [5]), the method must solve the
following linear system of equations:

Bi = Ei + �i

nX
j=1

BjFij (1)

whereBi is the radiosity of element i, Ei is the emission of element
i, �i is the diffuse reflectivity of element i, Fij is the fraction of the
energy leaving element i that arrives element j, and n is the number
of elements in the scene.

The primary challenges in implementing the radiosity method
are efficient computation and storage of the form factors. For each
form factor, Fij , a visibility calculation must be performed to deter-
mine a visibility percentage for elements i and j. This calculation
must consider other patches in the scene as potential blockers, and
thus accounts for the majority of the computation time in most
radiosity systems.

There has been considerable prior work on parallel implemen-
tations of the radiosity method. Most of this work has been applied
to the progressive radiosity algorithm [6] which has O(n2) compu-
tational complexity when solved to full convergence. Implementa-
tions for this algorithm have been described for MIMD computers
[2, 3, 16, 19], SIMD computers [8], transputers [9], shared memory
multi-processors [1, 7], and networks of workstations [4, 20]. Re-
cently, a few papers have appeared describing work on parallelizing
the Monte Carlo Radiosity algorithm [10, 30]. Most current imple-
mentations require a complete description of the scene’s geometry
to be resident in memory on all processors, thus limiting the size of
models for which they can be applied.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

There has been relatively little work on parallel implementa-
tions of the hierarchical radiosity method, which is surprising at first
glance since its asymptotic complexity is O(n) [17]. Singh [23] im-
plemented a parallel hierarchical radiosity solver for a shared mem-
ory multiprocessor system in which each processor was initially
assigned a queue of element-element interactions to process. When
a processor subdivided an element, it added new interactions for the
element’s children to the head of its own queue. Load balancing
was achieved by task stealing – idle processors removed and pro-
cessed interactions from the tail of other processors’ queues. Due
its communication intensive nature, this approach is not practical
for a network of distributed workstations.

Zareski [31] implemented a parallel version of the hierarchical
radiosity algorithm on a network of workstations using a master-
slave architecture in which each slave performed patch-ray intersec-
tion calculations for a separate subset of patches in the scene. For
each element-element interaction, the master process constructed a
set of rays and distributed them to every slave for parallel calcula-
tion of intersections with each slave’s subset of the patches. After
the slaves returned their hits for each ray, the master computed form
factors and updated radiosities. Speedup with this fine-grained ap-
proach was thwarted by both master processing bottlenecks and
the overhead of inter-process communication, resulting in longer
execution times with more processors.

There are several aspects of the hierarchical radiosity algorithm
that make parallelization difficult. First, since two patches can inter-
act at any level of their hierarchies, subcomputation times are highly
variable making load balancing difficult. Second, since both shooter
and receiver patches can be subdivided dynamically, reader/writer
locks must be used to enforce concurrency control during updates,
and deadlock avoidance/resolutionmust be considered. The compu-
tation required to manage concurrency control and deadlock during
access to the element radiosity and mesh hierarchies can signifi-
cantly reduce speedup results.

In summary, none of the previous parallel systems is fast or
robust enough to compute an accurate radiosity solution for a very
large building model because they suffer from at least one of the
following shortcomings: 1) greater than O(n) computational com-
plexity, 2) replication of the entire model for each processor, 3)
inaccuracies due to energy transfer or form factor approximations
(e.g., hemi-cube artifacts), 4) limited speedup due to contention
during access to shared data, and 5) communication overhead for
process control.

In order to scale to very large models, a radiosity system must
use an efficient matrix solution method, such as hierarchical ra-
diosity. The algorithm must be partitioned into separate concurrent
subcomputations that each accessa small subsetof the model. In or-
der to scale to many processors, the separate subcomputations must
read/write separate regions or copies of the model to avoid slow-
downs due to contention. Finally, the granularity of parallelism
must be coarse enough to allow execution with minimal overhead
for communication between participating processors. The design
and implementation of a parallel radiosity system meeting these
criteria is the topic of this paper.

3 Group Iterative Methods

The radiosity method must solve a linear system of equations rep-
resented by the row-diagonally dominant interaction matrix shown
in Figure 1. Group iterative methods partition the Bi variables into
groups, and rather than just relaxing one variable at a time, they
relax an entire group during a single step [13, 29]. Gauss-Seidel
group iteration relaxes each group using current estimates for Bjs
from other groups, while Jacobi group iteration usesBjs from other
groups updated at the end of the previous complete iteration through
all groups.
2
64

1 � �1F11 ��1F12 :: ��1F1n
��2F21 1 � �2F22 :: ��2F2n

: :

: :

: :

: :

��nFn1 ��nFn2 :: 1 � �nFnn

3
75

2
64

B1
B2
:

:

:

:

Bn

3
75 =

2
64

E1
E2
:

:

:

:

En

3
75

Figure 1: The radiosity matrix equation.

Application of Jacobi group iteration in the radiosity domain
can be interpreted as partitioning elements into groups, and then
iteratively “gathering” radiosity to elements using current radiosities
from elements in the same group and radiosities from the end of the
previous complete iteration for elements in other groups. Elements
within the same group bounce energy back and forth to convergence
during each iteration, while elements in different groups exchange
energy only once per iteration (see Figure 2).

 Exchange

 Energy Until

Convergence LIGHT
SOURCE

A

B

C

Primary beam

Figure 2: One relaxation step for group “ABC”.

There are several advantages to the group iterative approach for
large radiosity problems, particularly with regards to parallel pro-
cessing. First, each group “gathering” step updates radiosities only
for the elements in its group, which is advantageous for concur-
rency control when compared to “shooting” algorithms that update
radiosities for all elements in each step [3]. Second, with Jacobi
methods, updates to the radiosity values of elements in each group
depend only upon radiosity values copied at the end of the previous
iteration, and do not require access to current radiosity values for el-
ements in all groups. This property allows multiple radiosity solvers
to execute concurrently on different groups, with each solver updat-
ing a separate copy of the radiosity values without readers/writers
contention. It then becomes practical to use efficient, yet compli-
cated, radiosity algorithms, such as Hierarchical Radiosity [17], to
solve each group subproblem. Finally, group methods exhibit better
cache coherence than element-by-element methods [13] since links
between patches in the same group can be reused several times as
the group is solved to convergence. This feature is particularly im-
portant for radiosity problems whose form factor matrices do not fit
in memory all at once.

In this paper, we describe the design and implementation of
a radiosity system based on group iterative techniques that uses
multiple concurrent hierarchical radiosity solvers. For each iter-
ation, the system automatically partitions the patches describing
a scene into groups and executes hierarchical radiosity solvers to
compute converged radiosity solutions for separate groups on sep-
arate processors using separate versions of the model in parallel.
Throughout the computation, updated versions of the element ra-
diosities are copied into a master scene database for later use by
other processors. Since hierarchical substructuring and form factor
calculations are performed for different groups in parallel on the
separate processors accessing separate copies of the model, we can
accelerate overall computation times due to parallelism with little
or no contention. Since coordination of processes is performed at
a coarse-grained level (groups), relatively little communication is
required between processes. As a result, significant speedups are
possible for moderate numbers of processors. Furthermore, since
each processor must store only the working set for computations
for one group at a time, the approach scales to support very large
models.

4 System Organization

Our system is organized in a Master-Slave configuration with one
master and P slaves running concurrently on separate processors.
The slaves are used to execute radiosity computations, while the
master performs dynamic load balancing and data distribution.
All processes maintain independent (partial) copies of the scene
database, and slaves communicate with the master only via TCP
messages. This organization allows distribution across loosely-
coupled workstations without shared memory, or even shared disks.

4.1 Flow of Control

The flow of control between the master and slave processes is shown
in Figure 3. The master iteratively relaxes groups until convergence.
For each “master iteration,” the master partitions patches of the scene
database into groups, and then dynamically distributes the groups
to slaves one at a time for group relaxation computations. These
automatic partitioning and scheduling algorithms are the focus of
this paper, and are described in detail in the following section. This
section describes the organization of the system in which these
algorithms execute.

Slave Si

Partition elements
 into N groups

Convergence? Done

Receive Bjs for all
elements visible to
elements in group G

Perform complete HR
 gather to update all
 Bis in group G.

Send updated Bis
 in group G
 back to master

No

Yes

Convergence
 of group G?

No

Yes

Select group G
 for slave S

Download
 group G
 to slave S

Start

Master

Wait for message
from any slave S

 More
Groups?

Yes

No

Wait for message
 from master

Start

 Upload
 group G
from slave S

 TCP
Messages

Figure 3: Master-slave flow of execution.

The master starts by spawning P slave processes (usually on
remote computers) and opens a TCP socket connection to each of
them. It uses the select UNIX system call to detect messages
from multiple slaves. Whenever a slave, Si, indicates it is ready, the
master selects a group,G, from a list of candidate groups waiting to
be processedduring the current master iteration. Next, it downloads
to Si all patches potentially visible to any patch in group G (i.e.,
the “working set” for G). After the downloads have completed,
the master sends slave Si a message indicating that it can begin
its radiosity computations for group G. While Si relaxes group G
to convergence, the master continues servicing other slaves. After
slave Si finishes its computation, it sends updated radiosity values
back to the master for use in the current or future iterations.

Each slave runs asynchronously on a separate processor under
the guidance of the master process as shown on the right side of
Figure 3. When a slave receives a download message from the
master, it updates its local copy of the patches it receives, waits for
a compute message from the master, and then invokes a hierarchical
radiosity solver to gather radiosity to all patches in group G until
convergence.

The radiosity solver is based on the hierarchical (wavelet) ra-
diosity system described in [15, 17, 27]. Although its details are not
the focus of this paper, it is important to note that it stores its evolv-
ing solution in a disk-resident database and loads into memory only
the data required for the current subcomputation. It manages a fixed
size, memory-resident, LRU cache to store the most recently used
elements and links (form factors) in hopes that they will be used
again before they are discarded. As computation of the form factors
is the mostcostly componentof the system execution, effective man-
agement of this cache is critical to avoiding costly recomputation
or re-loading from disk. This feature of the slave solver is advanta-
geous for the group iterative approach. Since gathers are performed
multiple times to the elements of the same group in succession, the
group algorithms exhibit far greater cache coherency, and in our
case, we are often able to re-use links computed for two elements
multiple times before they are discarded from the cache. In contrast,
effective cache management would be very difficult with classical
gather algorithms that make successive sweeps over all patches in
the entire database.

After the radiosity computation for group G has been com-
pleted, the slave writes into its local cache updated versions of all
patches in G, including the refined hierarchical element meshes
and radiosities for each patch, and sends to the master an upload
message containing a packed representation of these patches. This
updated version of G is merged into the master scene database and
can potentially be downloaded to other slaves for later computations.

Note that communication between master and slave occurs only
three times for each group iteration: 1) to download patches to the
slave at the beginning of an iteration, 2) to invoke a radiosity com-
putation, and 3) to upload patches from the slave at the end of an
iteration. This coarse-grained approach to parallelism is important.
Other efforts to parallelize the radiosity method with a master-slave
organization have found master processing to be a bottleneck, and
communication overhead has diminished speedup results signifi-
cantly using relatively few slave processors. Our strategy is to
design a system in which a master coordinates execution of the
slaves, but at a very coarse granularity, with very infrequent com-
munication.

4.2 Data Distribution

The scene description is initially available only to the master. It is
stored in a database containing patches represented by quad-trees of
elements with diffuse reflectivity, radiosity, and emission attributes.
The patches are stored in the scene database arranged in clusters
specified by the modeler at scene creation time. The scene database
also contains precomputed cluster-to-cluster visibility information.
The cluster visibility calculation is performed off-line using the
algorithms described in [26] and generates a list for each cluster
indicating which other clusters are potentially visible to it – i.e.,
not occluded by a wall, ceiling, or floor. Although clustering and
visibility techniques are an important research area, and essential to
the efficient execution of our radiosity system, these topics are not
addressed in this paper. See [21, 22, 24, 26] for further information.

Since only the master has access to the complete scene database,
it must download portions of the database (i.e., potential working
sets) to slaves during execution. We define the potential working set
for a group G to be all the patches, including their element meshes
and radiosities, that are visible to any patch in G. This definition of
the working set is a conservative over-estimate of the set of data the
slave may need access to during radiosity gather operations for any
group. Since patches in occluded clusters cannot exchange energy
directly, we can use the precomputed cluster-to-cluster visibility

information of the scene database to compute the potential working
set efficiently.

During execution, the master keeps an index of which clusters
have already been downloadedto each slave. It traverses the cluster-
to-cluster visibility lists for all clusters containing patches in group
G, checking whether the potentially visible cluster, C , is already
up-to-date on the slave, Si . If not, it reads from the disk-resident
scene database all the data describing patches in C , including the
hierarchical mesh of elements with radiosities. It packs this data into
a buffer and performs a write to the TCP socket for slaveSi . Finally,
it marks slave Si up-to-date for clusterC in its index, and continues
checking for other potentially visible clusters to download. Note
that all patches of a cluster are required to be in the same group,
making this download processing somewhat more efficient. After
all clusters in the working set of G are up-to-date on slave Si , the
master sends a short message indicating which clusters belong to
group G, and directing it to gather radiosity to all patches in those
clusters to convergence.

After the slave has updated the radiosities for all patches in group
G to convergence, it sends an upload message to the master with
complete updates for every clusterC in groupG. The master writes
these updates back to a new version of clusterC in its disk-resident
database. It then marks clusters inG out-of-date for all slaves except
Si , causing them to be freshly downloaded for subsequent gather
operations for clusters visible to G. With this concurrent “copy-
update-replace methodology,” our system does not truly execute
either the Jacobi group or Gauss-Seidel group iterative method, as
it is indeterminate whether the old or updated copies of a group’s
variables will be used during each group relaxation step. Proof
of convergence with this optimization is shown in the following
section.

The data distribution features of our system are important for
scaling to support computations with very large models. The master
stores only the scene database header information in main memory
(generally less than 20MB), while the clusters, patches, and ele-
ments reside on disk. Each slave receives and stores only the subset
of the scene database required for its computation, avoiding full
replication of the entire database on any processor as is required by
most other parallel radiosity systems.

4.3 Convergence Proof

Proof of convergence of our parallel group iterative method can
be shown by comparison to the standard sequential group Jacobi
method, which is known to converge [29]. Consider splitting the
matrix A (as in Ax = b) into A = D�L�U where D has blocks
along the diagonal,L has the opposites of element belowD, andU
has opposites of elements above D. For the radiosity equation, A
is monotone (i.e., it has non-negative elements along the diagonal
and non-positive elements elsewhere), D is monotone, L � 0, and
U � 0.

The standard group Jacobi method iterates according to the
following equation:

xk+1 = IJxk +D
�1
b

where IJ = D
�1
(L+ U)

whereas our modified group method iterates using some variables
updated in the current iteration and some updated in the previous
iteration:

xk+1 = IMxk + (D� L
k
1)

�1
b

where IM = (D� L
k
1)

�1
(L

k
2 + U);

L = L
k
1 + L

k
2 ; L

k
1 � 0; and Lk2 � 0
We can show that our modified group method converges if the
error is reduced during each iteration. Since

jjxk+1 � xjj

jjxk � xjj
� �(IM)

where
jjxk+1�xjj

jjxk�xjj
is a suitable vector norm, and�(IM) is the spectral

radius of IM , convergence is guaranteed if �(IM) � �(IJ) < 1.
We prove �(IM) � �(IJ) using corollary 5.6 on page 125 of Young
[29]:

“Let A be a monotone matrix and let A = Q1 � R1

and A = Q2 � R2 be two regular splittings of A. If
R2 � R1, then �(Q�1

2 R2) � �(Q�1
1 R1).”

A regular splitting of A is one in which A = Q � R where
Q�1

� 0 and R � 0. For the standard group Jacobi iteration
method, let A = Q1 � R1 where Q1 = D and R1 = L+ U . Note
that Q�1

1 � 0 since D is monotone and R1 � 0 since L � 0 and
U � 0. For our modified group iteration method, let A = Q2 �R2

where Q2 = D� Lk1 and R2 = Lk2 +U . Note that Q�1
2 � 0 since

D � Lk1 is monotone. Also note that R2 � 0 since Lk2 � 0 and
U � 0, and R2 � R1 since L � Lk2 .

Applying corollary 5.6 and convergence of the standard group
Jacobi method, we see that �(IM) < 1 and the modified group
iterative method must converge:

�(IM) = �(Q
�1
2 R2) � �(Q

�1
1 R1) = �(IJ) < 1

5 Parallel Programming

A general strategy for parallel programming is to decompose a
computation into a set of independent subcomputations, and then
to distribute the subcomputations for execution in parallel on avail-
able processors. The important issues are to find an appropriate
decomposition (i.e., partition patches into groups), and to schedule
execution of the subcomputations effectively (i.e., load balancing).
These issues are addressed in detail in this section.

5.1 Group Partitioning

Goals and Strategies

Based on intuition derived from experimentation with our system,
we have developed the following set of guidelines that constrain
our automatic partitioning algorithms: 1) the number of groups,
N , should be bounded from below so that there are guaranteed to
be enough groups to schedule effectively on P slave processors
(e.g., N > 8P); 2) each group should be large enough that the
time required to distribute its computation to a slave is not more
than it would have been to perform it locally on the master; and
3) each group should be small enough that the links for radiosity
updates to all elements in the group fit in a slave’s memory-resident
cache so that they may be re-used over and over again without
recomputation as the group is solved to convergence. We combine
these constraints with the goals of maximizing intra-group form
factors while minimizing inter-group form factors to form the basis
of our partitioning algorithms.

For practical purposes, we consider only partitionings in which
all patches of a cluster are assigned to the same group. This re-
striction simplifies the partitioning algorithms, and aids execution
of the data distribution algorithms during execution of our radiosity
system, as described in the previous section.

Conceptually, we address the cluster partitioning problem as a
computation on a form factor graph in which each node in the graph
represents a cluster, and each edge represents an estimate of the
form factor between its nodes’ clusters (a simple form factor graph

is shown in Figure 4). With this formulation, we state the cluster
partitioning problem as follows: assign nodes of the form factor
graph to groups such that the cumulative weight of edges between
nodes in the same group divided by the cumulative weight of all
edges is maximal.

Unfortunately, this problem is equivalent to the Graph Bisec-
tion Problem [12], which is known to be NP-complete. However,
we have developed two automatic algorithms that find approximate
and useful solutions in polynomial time. The first algorithm, called
the Merge Algorithm, starts by assigning each cluster to a separate
group and then iteratively merges groups. Conversely, the second
algorithm, called the Split Algorithm, starts by assigning all clus-
ters to the same group and then recursively splits groups. Either
algorithm can be used to construct groups, or the algorithms can be
applied successively to iteratively refine groups.

A

C

B

D

E
A

D

C

E

B

Cluster Geometry Form Factor Graph

Figure 4: Simple scene (left) with its form factor graph (right).
Edge thickness represents form factor magnitude.

Merge Algorithm

The Merge Algorithm operates on an augmented version of the form
factor graph in which nodes represent groups rather than clusters.
In this augmented graph, the edge between two nodes representing
groups A and B has weight equal to the sum of the form factors
between all combinations of clusters in groups A and B. Initially,
a graph is created with one node for each cluster. For the purposes
of constructing this graph, an edge weight is set to zero (or the edge
is not created at all) if two clusters are known to be occluded from
one another (as determined by a lookup in the precomputed cluster-
to-cluster visibility information stored in the scene database). Oth-
erwise, the form factor, FAB , from one cluster A to another cluster
B is estimated as the solid angle subtended by a disk representing
cluster B [28]:

FAB = r
2
=(d

2
+ r

2
) (2)

where d is the distance between A and B, and r is the radius of
a sphere bounding B. This approximation is an over-estimate that
does not consider individual patch orientations and assumes that A
is entirely visible to B.

Once the form factor graph has been constructed, the Merge
Algorithm iteratively merges groups (nodes of the graph) until no
further combinations are possible within the following constraints:
1) the number of groups is greater than a user specified minimum,
MinGroups, and 2) the estimated number of links for any group
with more than one cluster is below a user specified maximum,
MaxLinks. By default, MaxLinks is arbitrarily set to be 1:25 �
TotalLinks=MinGroups, where TotalLinks is the sum of the link
estimates for all groups.

The key challenge for implementation of the Merge Algorithm
is selecting two appropriate groups to merge during each step of
the algorithm. We take a greedy approach. The pair of groups, A
and B, is chosen whose merger causes the greatest increase in the
ratio of intra-group edge weights divided by the total of all edge
weights. If the merger of these groups meets all constraints, they
are combined into one. During the merge operation, edges from A
andB to other nodes are replaced by ones to the new merged node.
The weight of this new edge is the sum of the weights of the edges
it replaces (see Figure 5). The algorithm repeatedly merges groups
until it can no longer find any pair of groups to merge legally, or the
solution cannotbe improved. In the worst case, when all clusters are
visible to one another, the algorithm is bounded by O(N 2logN).
However, in situations such as building interiors, where visibility
sets are usually of constant size, the average execution time for the
merge algorithm is O(NlogN).

A

DE

C

B

E
A

D

C

B

.8

.2

.5

.1
.1 .3.1

.5

Figure 5: Merge operation for nodes ‘D’ and ‘E’.

Split Algorithm

The Split Algorithm uses a strategy that is the converse of the Merge
Algorithm. It starts with all clusters assigned to a single group and
then recursively splits groups until further splits do not improve the
solution. This algorithm can be interpreted as a recursive binary
partitioning of the form factor graph.

During each step of the algorithm, our goal is to choose an
appropriate partition of one group into two new ones that meet all
size constraints and have minimal inter-group form factors. We
use geometric split heuristics originally developed for construction
of spatial subdivisions for use in visibility determination (e.g., BSP
trees [18]). Specifically,we partition the model along planes aligned
with “major occluding” polygons of the model (see [25] for details).
As the model is split recursively by these planes, clusters are as-
signed to groups depending on whether their centroid lies above or
below the splitting plane (see Figure 6). This process is applied
recursively until no groups can be split within minimum group size
constraints, or until no further “major occluder” polygons can be
found. The algorithm runs inO(NlogN). If split planes are chosen
appropriately (i.e., such that the cumulative form factors between
clusters on separate sides of the plane are small), it generates a
partitioning with little exchange of energy between groups during a
radiosity simulation.

E
A

D

C

B

E
A

D

C

B

Group G

Group A

Group B

Figure 6: Split operation creating groups ‘A’ and ‘B’.

Figure 7 shows two sets of 16 groups constructed using the
Merge and Split algorithms, respectively, for a one floor building
model comprising 1667 clusters. (clusters are shaded based upon
which group they were assigned). Using the Merge algorithm,
groups tend to be formed from clusters that are visible to each other
(e.g., offices across hallways), whereas groups tend to be formed
from clusters that are nearby each other using the Split algorithm
(e.g., neighboring offices).

Merge Algorithm Split Algorithm

Figure 7: Groups formed by the merge and split algorithms.

5.2 Scheduling

Load balancing is a primary concern in any parallel system. Our
goal is to schedule group radiosity subcomputations on slaves in
a manner that maximizes the rate of convergence to an overall
solution. Unfortunately, this Multi-Processor Scheduling Problem
is NP-Complete since each subcomputation is non-preemptable,
task execution times are highly variable, and workstations may have
different performance capabilities [11]. In this section, we describe
our approximation algorithms for scheduling and load balancing.

First-Fit Decreasing Algorithm

A common scheduling strategy for minimizing the total completion
time for a set of tasks run on multiple processors is to select tasks
in order of their expected execution times, largest to smallest. This
strategy is called the First Fit Decreasing (FFD) algorithm [11]. The
idea is to schedule the large tasks first so that there is less chance
that their execution times will extend beyond the last execution time
of any other task.

We have applied this principal in our radiosity system. The
difficult challenge is to predict in advance how long a radiosity
computation for a group will take. We estimate the relative compute
time for a transfer of radiosity from one clusterA to another cluster
B by FAB . This estimate is based on the observation that slave
compute times are dictated by the number link evaluations (ray-
patch intersections), which is determined by the errors in computed
element-element form factor estimates, which in turn are roughly
correlated to form-factors. In order to estimate the computation time
for gathers to a group of clusters,G, we sum estimated computation
times for all cluster pairs in which at least one of the two clusters
is in G, and the clusters are known to be at least partially visible to
one another via the form factor graph.

To execute the FFD algorithm,the master sorts groups according
to computation time estimates as they are constructed. Then, groups
are simply assigned in FFD order as slaves become available during
execution.

Working Set Algorithm

The general principal of minimizing total completion time for a set
of independent subcomputations is not enough to guarantee a fast
convergence rate for our radiosity system. We must also consider
factors affecting data download performance, duplicate calculation,
and energy distribution. These issues are particularly important be-
cause each slave maintains a local cache of data containing element
radiosities and links previously computed. The history of which
groups a slave has previously processed affects the download time
and the energy distribution rate for the current computation. These
issues are likely even more important for a system utilizing bi-
directional links (our system creates uni-directional links) in which
case re-use of inter-group links could be a significant scheduling
consideration.
We have developed a dynamic scheduling algorithm that con-
siders data download factors when scheduling group computations
on slaves. The Working Set (WS) algorithm uses a heuristic that is
designed to assign groups to slaves for which their working set has
already been downloaded. Each time a slave Si becomes available,
it considers groups remaining to be processed during this iteration.
For each candidate group, G, it computes the percentage of the
clusters visible to any cluster in G that are already resident on Si .
It then subtracts from this value the percentage of clusters visible to
G that are not resident on Si, but are resident on some other slave.
This latter factor helps to keep the visibility sets of groups assigned
to different slaves separated. The difference between these two per-
centages forms the heuristic that the Working Set algorithm uses
to choose the best group for each slave dynamically as the system
executes.

Combined Scheduling Algorithm

The methodologiesof the FFD and WS algorithms can be combined.
We generally use a combined scheduling algorithm (FFD-WS) that
dynamically chooses a group as each slave becomes available ac-
cording to the WS heuristic subject to the constraint that every group
must be scheduled within “delta” slots of its position in FFD order.
This algorithm is equivalent to the FFD algorithm if delta = 1, and
it is equivalent to the WS algorithm if delta = 1. Otherwise, if
1 < delta < N , we hope to realize the advantages of both the FFD
and WS approaches.

6 Results and Discussion

In order to test the effectiveness of the group iterative approach for
solving large radiosity problems in parallel, we executed a series of
experiments with our system using different group partitioning and
load balancing algorithms. During these experiments, we used up
to eight Silicon Graphics slave workstations, each with a 150MHz
R4400 processor and at least 80MB of available memory, 32MB
of which was available for caching links. The workstations were
spread over two separate local area networks and did not share disk
files. Unless stated otherwise, the Merge Algorithm was used to
construct 256 groups, and the FFD-WS algorithm was used with
delta = 16 for dynamic load balancing. In all experiments except
the one described in Section 6.1, the master process performed two
complete iterations in which a slave gathered to every patch in each
group twice with a moderately fine error tolerance. During the initial
slave iteration, patches gathered radiosity only from the lights.

Our test model in every experiment was the computation of a ra-
diosity solution for one unfurnished floor of the Soda Hall building
model. This test model contained 6,418 patches in 1,667 clusters,
242 of which contained only emissive patches. The total area of all
surfaces was 10,425,645 square inches. Although this test model
was not particularly complex, it was useful for experimentation.
With a larger model, it would have been impractical for us to inves-
tigate algorithmic trade-offs by performing many executions of the
radiosity solver with different parameters.

6.1 Group Iteration Results

We first compared the performance of the group iterative method
to traditional iterative methods (independent of parallel processing)
by computing the radiosity solution for our test model using a sin-
gle processor both with and without grouping of patches. During
the first test, patches were not grouped, and 4 traditional Gauss-
Seidel iterations were made over all patches. During the second
test, patches were partitioned into 256 groups by the Merge algo-
rithm. Then, three Gauss-Seidel group iterations were made over

all groups, during which every patch in a group gathered radios-
ity twice (groups were not solved to full convergence during each
step). During the test without grouping, every patch gathered ra-
diosity from every other patch four times. In contrast, during the
test with grouping, patchesgathered radiosity six times from patches
within the same group, but only three times from patches in other
groups. Plots of transfer rates measured during these tests are shown
in Figure 8. Circles on the plots indicate the end of a compete sweep
through all variables in each test.

6

20

0 300

T
ot

al
 P

ow
er

 (
M

W
)

Elapsed Time (m)

Group Iteration
Ungrouped Iteration

Figure 8: Transfer rates for grouped/ungrouped iteration.

Even without parallel processing, the group iterative method
out-performed the traditional approach during this experiment. The
performance difference was mostly due to the fact that the group
method more effectively made use of links and patches cached in
memory by the solver. As described in Section 4, the solver main-
tained LRU memory resident caches of links and patches. Patches
that did not fit in the cache had to be flushed to disk, while links that
did not fit in the cache were discarded and later recomputed. During
this experiment, although the total amount of storage required for
links exceeded the cache limit (32MB), the maximum working set
for any group did not. As a result, since the group method cycled
over patches in each group multiple times in succession, it was often
able to re-use previously computed links (45% of the time). In con-
trast, the traditional method executed a worst-case access pattern
for the LRU cache, making complete sweeps through all patches in
succession, and thus was not able to re-use any links.

6.2 Partitioning Results

We next studied the effects of different group partitioning algorithms
by executing a sequence of tests with 8 slaves using the following
methods to partition clusters into 256 groups:

� Merge: Groups were constructed using the Merge Algorithm
with MinGroups = 256.

� Split: Groups were constructed using the Split Algorithm
partitioning on floors, ceilings, and walls of the building
model with MaxGroups = 256.

� Region: Clusters were assigned to groups based on the (x,y)
coordinates of their centroids in a 16x16 grid.

� Random: Clusters were assigned to groups randomly.

Figure 9 contains plots of transfer rates measured during these
tests. The system converged fastest using partitions generated au-
tomatically with the Merge and Split Algorithms. This is due to
the fact that these algorithms combined clusters into the same group
based on estimated form factor and proximity relationships. During
every test, each patch gathered radiosity a total of four times – two
iterations in a slave for each of two master iterations. This means
that energy was distributed with four reflections between clusters in
the same group, while only two reflections occurred between clus-
ters in different groups. As expected, the performance of the group
iterative approach was better using partitions with larger intra-group
form factors.

6

18

0 30

T
ot

al
 P

ow
er

 (
M

W
)

Elapsed Time (m)

Merge
Split

Region
Random

Figure 9: Transfer rates for different partitioning algorithms.

6.3 Granularity Results

We studied the effects of group granularity by measuring system
performance using 8 slaves for tests with groups of different sizes.
Using the Merge Algorithm, we executed tests with the clusters
partitioned into 32, 128, 256, and 1,425 groups. The test with 1425
groups represents construction of a separate group for each cluster
containing at least one reflective patch.

Plots of transfer rates measured in each test appear in Figure
10. We found that the advantage of the group iterative method is
reduced if groups are very small since there is little opportunity to
re-use links computed for intra-group radiosity transfers. On the
other hand, if we used just a few large groups, the data required
for all intra-group links exceeded a slave’s cache capacity for some
groups, reducing the effectiveness of the cache. Also, it was more
difficult to schedule a relatively few, large subcomputations across
available slave processors in order to achieve the best possible com-
pletion times. During our experiments, tests performed best with
256 groups that roughly corresponded to the small, convex regions
of the model. This result depends on a variety of factors, including
the size of link caches in slaves and the variability of group sizes.

6

18

0 30

T
ot

al
 P

ow
er

 (
M

W
)

Elapsed Time (m)

256
128
32

1425

Figure 10: Transfer rates for different group granularities.

6.4 Scheduling Results

We investigated load balancing and scheduling effects by executing
a series of tests using 8 slaves with different scheduling algorithms:

� FFD: Groups were assigned to slaves in FFD order.
� WS: Groups were assigned to available slaves dynamically

to minimize the WS heuristic.
� FFD-WS: Groups were assignedto slaves dynamically using

the FFD-WS algorithm with delta = 16.

From statistics measured during these tests, we found that
the scheduling factors impacting convergence rates most were: 1)
master-slave download times, and 2) slave idle times (particularly
at the end of each iteration). As expected, the master spent the least
amount of time downloading data to slaves during tests using the
WS algorithm (98 seconds). The advantages of the WS approach
can be seen in Figure 11, in which all 256 groups are shaded ac-
cording to which of the 8 slaves they were assigned during tests
using the FFD and WS algorithms. The coherence of the working
sets assigned to slaves using the WS algorithm allows the system to
minimize data downloads and maximize energy transfers.

FFD Algorithm WS Algorithm

Figure 11: Visualization with groups shaded by slave.

Unfortunately, the test using the WS algorithm also spent the
most amount of time waiting for the last slave to finish at the end
of each iteration (547 seconds). In particular, one very large group
computation was postponed until the very end of the second itera-
tion, causing the master and seven of the slaves to sit idling while
the eighth slave finished its computation for that group. In contrast,
the FFD algorithm spent a small amount of time waiting for the last
slave at the end of each iteration (13 seconds), but it spent the most
time downloading data to slaves (248 seconds).

The trade-offs between scheduling to minimize downloads and
scheduling to minimize time waiting for the last slave can be seen in
Figure 12, which shows a vertical elapsed time-line for each of the
8 slaves during tests with the FFD, WS, and FFD-WS algorithms.
Every distinct vertical bar segment represents radiosity computation
for one group on one slave. Using the FFD algorithm, the execution
time predictor does fairly well, and longer tasks are generally sched-
uled earlier in each iteration (the first of the two master iterations
ends approximately 1/3rd of the way up the time-line). However,
because the master spends more time downloading data to slaves
(synchronously), there are more frequent and longer periods during
which a slave is waiting for the master (blank spaces between verti-
cal bars). Using the WS algorithm, although download times are far
less (intra-bar gaps are smaller), the computation for one very large
group was scheduled near the end of iteration 2 (on Slave 2) causing
the master and all other slaves to wait for it to complete. The com-
bined FFD-WS algorithm seemed to achieve a good combination of
download times (191 seconds) and wait times (8 seconds), and thus
converged most rapidly.

6.5 Speedup Results

Finally, we executed an experiment to determine how much speedup
is possible with our system via parallel processing. During this
experiment, we solved the one floor test model four times using 1,
2, 4, and 8 slaves, respectively. A plot of speedup for increasing
numbers of slave processes is shown in Figure 13.

For up to 8 slave processors, the system maintains a 65-75%
speedup. The speedup is less than 100% due to the synchronous
master-slave communication model of our system. Although the
group iterative approach provides a relatively coarse granularity of
parallelism, the master communicates with slaves synchronously
in our current implementation – i.e., it can only talk to one slave
0

30

E
la

ps
ed

 T
im

e
(m

)

FFD Slaves WS Slaves FFD-WS Slaves

Figure 12: Slave compute time (solid) vs. wait time (blank).

at a time. As a result, if two slaves finish a subcomputation and
become ready for further processing at the same time, one must
wait while the master exchanges data with the other. The impact
of this effect is determined by the likelihood that a slave will finish
a subcomputation while the master is processing data for another
slave. Although this likelihood grows with the number of slaves,
it is also affected by the relationship of time required for master
processing of downloads/uploads versus the time required for slave
processing of a group radiosity subcomputation. For solutions in
which the slave radiosity subcomputations are longer relative to the
data distribution times, speedup results are better.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Slaves

Figure 13: Transfer rate speedup for 1, 2, 4, and 8 slaves.

The speedup bottleneck resulting from our current synchronous
communication model with a centralized master can be mitigated
somewhat by enhancing the master to use asynchronous I/O proto-
cols or by switching to communication protocols in which slaves
transfer data among themselves under master coordination. Based
on our preliminary results, we are optimistic that the group iterative
approach provides coarse enough granularity that our master-slave
system can scale to large numbers of slave processors with the addi-
tion of enhanced communication methods. Unfortunately, we have
not yet implemented these improvements, and do not currently have
access to enough workstations to determine the absolute limits of
our current system.

The speedup experiments point out an interesting trade-off of
our parallel group iterative approach. On one hand, when more
slaves compute concurrently, we are able to evaluate more element
interactions in less time. On the other hand, since updated radiosity
values are distributed from the master to a slave workstations only
after they have been uploaded from other slaves, Gauss-Seidelgroup
iteration is achieved only during tests with one slave. In contrast,
if all groups were scheduled simultaneously on different slaves, the
system would perform a true Jacobi group iteration. As more slaves
are added to the system, the system more closely resembles Jacobi
iteration since more and more computations are performed with

copies of radiosity values last updated at the end of the previous
iteration. Further research is required to investigate the impact of
this effect.

6.6 Practical Results

As a final test, we computed a radiosity solution for a very large
model using the system described in this paper. The model repre-
sents five floors of a large building with approximately 250 rooms
containing furniture. It was constructed with 14,234 clusters com-
prising 280,836 patches, 8,542 of which were emitters and served as
the only light sources. The total area of all surfaces was 75,946,664
square inches. Three complete iterations were made through all
patches using an average of 4.96 slave processors in 168 hours. The
entire computation generated 7,649,958 mesh elements and evalu-
ated 374,845,618 element-to-element links.

During this execution, the master spent 0.8% of its time con-
structing and scheduling groups, 4.4% downloading data to slaves,
2.6% uploading results from slaves, and 89.0% waiting for slaves.
The slaves spent 0.1% of its time downloading data from the master,
0.1% uploading results to the master, 79.1% updating radiosities,
and 5.0% waiting for the master. Although it was not practical for
us to solve this model using a single processor for comparison, we
estimate the speedupdue to parallelism as the time spentperforming
radiosity computations in slaves divided by the elapsed time, which
was 3.9 in this case, or 79% of linear speedup.

Figure 14 shows renderings of this large radiosity solution from
various viewpoints captured during an interactive walkthrough.
Outlines around mesh elements are included in the bottom-right
image for detailed inspection. Note the adaptive refinement of el-
ements in areas of partial visibility (e.g., on the floor near the legs
of tables and chairs) due to hierarchical radiosity meshing. To the
author’s knowledge, this model is the most complex for which a
radiosity solution has ever been computed.

7 Conclusion

This paper describes a system for computing radiosity solutions for
very large polygonalmodels using multiple concurrentprocesses. A
master process automatically partitions the input model into groups
of patches and dynamically schedulesslave processeswhich execute
independent hierarchical radiosity solvers to update the radiosities
of patches in separate groups. During experiments with this system,
uniprocessor group methods out-performed traditional methods due
to improved cache coherence, while multi-processor group methods
achieved further speedups of 65-75% using up to 8 slave worksta-
tions.

We have found that the implementation and analysis of a dis-
tributed approach to the radiosity problem requires careful con-
sideration of group partitioning, data distribution, and load bal-
ancing issues. Coarse-grained parallel execution using multiple
separate copies of a shared database allows multiple processors to
execute concurrently with little contention or synchronization over-
head. However, since updates to the shared database are executed
with coarse granularity, many of the subcomputations may be per-
formed using out-of-date database values, potentially reducing the
convergence rate.

The conflicting goals between computing in parallel versus
computing with the most up-to-date data results in an interesting
trade-off whose resolution is affected by a multitude of factors, in-
cluding the size of workstation memories, the size of working sets,
the speed of the network, and so on. We believe that examining
issues in parallel execution for large computations distributed over
a network is an interesting research area that will become more and
more important as networked computing resources become more
and more prevalent.
Acknowledgements

The author thanks Roland Freund and Wim Sweldens for developing
the convergence proof appearing in this paper. I am also grateful to
Pat Hanrahan, Peter Schroder, and Stephen Gortler for their helpful
insights and discussion, and to Seth Teller and Celeste Fowler for
their efforts building the original radiosity system at Princeton. Fi-
nally, special thanks to Carlo Séquin and the UC Berkeley Building
Walkthrough Group for building the model of Soda Hall and for
getting me started on this research project.

References

[1] Baum, D., and Winget, J. Real Time Radiosity Through Paral-
lel Processing and Hardware Acceleration. Computer Graph-
ics (1990 Symposium on Interactive 3D Graphics), 24, 2,
67-75.

[2] Bouatouch, K., and Priol, T. Data Management Scheme for
Parallel Radiosity. Computer-Aided Design, 26, 12, Decem-
ber, 1994, 876-883.

[3] Chalmers, A, and Paddon, D. Parallel Processing of Pro-
gressive Refinement Radiosity Methods. Second Eurographics
Workshop on Rendering, Barcelona, Spain, May, 1991.

[4] Chen, S.E. A Progressive Radiosity Method and its Imple-
mentation in a Distributed Processing Environment. Master’s
Thesis, Cornell University, 1989.

[5] Cohen, M., Greenberg, D., Immel, D., and Brock, P. An Effi-
cient Radiosity Approach for Realistic Image Synthesis. IEEE
Computer Graphics and Applications, 6, 3 (March, 1986),
25-35.

[6] Cohen, M., Chen, S., Wallace, J., and Greenberg, D. A Pro-
gressive Refinement Approach to Fast Radiosity Image Gen-
eration. Computer Graphics (Proc. SIGGRAPH ’88), 22, 4,
75-84.

[7] Drettakis, G., Fiume, E., and Fournier, A. Tightly-Coupled
Multi-Processing for a Global Illumination Algorithm. EU-
ROGRAPHICS ’90, Montreux, Switzerland, 1990.

[8] Drucker, S., and Schroder, P. Fast Radiosity Using a Data
Parallel Architecture. Third Eurographics Workshop on Ren-
dering, 1992.

[9] Feda, M., and Purgathofer,W. Progressive Refinement Radios-
ity on a Transputer Network. Second Eurographics Workshop
on Rendering, 1991, 139-148.

[10] Feda, M., and Purgathofer, W. Progressive Ray Refinement
for Monte Carlo Radiosity. Fourth Eurographics Workshop on
Rendering, 1993, 15-25.

[11] Garey, M., and Johnson, D. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, New York, 1979.

[12] Guattery, S., and Miller, G. On the Performance of Spectral
Graph Partitioning Methods. 1995 ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1995.

[13] Golub, G., and Van Loan, C. Matrix Computations. John Hop-
kins University Press, Baltimore, MD, 2nd Edition, 1989.

[14] Goral, C., Torrance, K., Greenberg, D., and Battaile, B. Mod-
eling the Interaction of Light Between Diffuse Surfaces. Com-
puter Graphics (Proc. SIGGRAPH ’84), 18, 3, 213-222.

Figure 14: Images captured during an interactive walk through one large radiosity solution.
[15] Gortler, S., Schroder, P., Cohen, M., and Hanrahan, P. Wavelet
Radiosity. Computer Graphics (Proc. SIGGRAPH ’93), 221-
230.

[16] Guitton, P., Roman, J., and Subrenat, G. Implementation Re-
sults and Analysis of a Parallel Progressive Radiosity. In 1995
Parallel Rendering Symposium, Atlanta, Georgia, October,
1995, 31-37.

[17] Hanrahan, P., and Salzman, D. A Rapid Hierarchical Radiosity
Algorithm. Computer Graphics (Proc. SIGGRAPH ’91), 25,
4, 197-206.

[18] Naylor, B. Constructing Good Partitioning Trees. Graphics
Interface ‘93. Toronto, CA, May, 1993, 181-191.

[19] Paddon, D., and Chalmers, A. Parallel Processing of the Ra-
diosity Method. Computer-Aided Design, 26, 12, December,
1994, 917-927.

[20] Recker, R., George, D., and Greenberg, D. Acceleration
Techniques for Progressive Refinement Radiosity. Computer
Graphics (1990 Symposium on Interactive 3D Graphics), 24,
2, 59-66.

[21] Rushmeier, H., Patterson, C., and Veerasamy, A. Geometric
Simplification for Indirect Illumination Calculations. Graph-
ics Interface ’93, May, 1993, 227-236.

[22] Sillion, F. A Unified Hierarchical Algorithm for Global Illu-
mination with Scattering Volumes and Object Clusters. IEEE
Transactions on Visualization and Computer Graphics, I, 3,
September, 1995.

[23] Singh, J.P., Gupta, A. and Levoy, M. Parallel Visualization Al-
gorithms: Performance and Architectural Implications. IEEE
Computer, 27, 7 (July 1994), 45-55.

[24] Smits, B., Arvo, J., and Greenberg, D. A Clustering Algorithm
for Radiosity in Complex Environments. Computer Graphics
(Proc. SIGGRAPH ’94), 435-442.

[25] Teller, S., Visibility Computations in Densely Occluded Poly-
hedral Environments. Ph.D. thesis, Computer Science Divi-
sion (EECS), University of California, Berkeley, 1992. Also
available as UC Berkeley technical report UCB/CSD-92-708.
[26] Teller, S., and Hanrahan, P. Global Visibility Algorithms for
Illumination Computations. Computer Graphics (Proc. SIG-
GRAPH ’93), 239-246.

[27] Teller, S., Fowler, C., Funkhouser, T., and Hanrahan, P. Par-
titioning and Ordering Large Radiosity Computations. Com-
puter Graphics (Proc. SIGGRAPH ’94), 443-450.

[28] Wallace, J., Elmquist, K., Haines, E. A Ray Tracing Algorithm
for Progressive Radiosity. Computer Graphics (Proc. SIG-
GRAPH ’89), 23, 3, 315-324.

[29] Young, D.M. Iterative Solution of LargeLinear Systems.Com-
puter Science and Applied Mathematics. Academic Press,
New York, 1971.

[30] Zareski, D., Wade, B., Hubbard, P. and Shirley, P. Efficient
Parallel Global Illumination using Density Estimation. 1995
Parallel Rendering Symposium. Atlanta, Georgia, October,
1995, 47-54.

[31] Zareski, D. Parallel Decomposition of View-Independent
Global Illumination Algorithms. Master’s thesis, Cornell Uni-
versity, 1996.

